home *** CD-ROM | disk | FTP | other *** search
-
-
-
- ZZZZGGGGEEEESSSSVVVVDDDD((((3333SSSS)))) ZZZZGGGGEEEESSSSVVVVDDDD((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- ZGESVD - compute the singular value decomposition (SVD) of a complex M-
- by-N matrix A, optionally computing the left and/or right singular
- vectors
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE ZGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
- LWORK, RWORK, INFO )
-
- CHARACTER JOBU, JOBVT
-
- INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
-
- DOUBLE PRECISION RWORK( * ), S( * )
-
- COMPLEX*16 A( LDA, * ), U( LDU, * ), VT( LDVT, * ), WORK( * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- ZGESVD computes the singular value decomposition (SVD) of a complex M-
- by-N matrix A, optionally computing the left and/or right singular
- vectors. The SVD is written
- A = U * SIGMA * conjugate-transpose(V)
-
- where SIGMA is an M-by-N matrix which is zero except for its min(m,n)
- diagonal elements, U is an M-by-M unitary matrix, and V is an N-by-N
- unitary matrix. The diagonal elements of SIGMA are the singular values
- of A; they are real and non-negative, and are returned in descending
- order. The first min(m,n) columns of U and V are the left and right
- singular vectors of A.
-
- Note that the routine returns V**H, not V.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- JOBU (input) CHARACTER*1
- Specifies options for computing all or part of the matrix U:
- = 'A': all M columns of U are returned in array U:
- = 'S': the first min(m,n) columns of U (the left singular
- vectors) are returned in the array U; = 'O': the first min(m,n)
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- ZZZZGGGGEEEESSSSVVVVDDDD((((3333SSSS)))) ZZZZGGGGEEEESSSSVVVVDDDD((((3333SSSS))))
-
-
-
- columns of U (the left singular vectors) are overwritten on the
- array A; = 'N': no columns of U (no left singular vectors) are
- computed.
-
- JOBVT (input) CHARACTER*1
- Specifies options for computing all or part of the matrix V**H:
- = 'A': all N rows of V**H are returned in the array VT;
- = 'S': the first min(m,n) rows of V**H (the right singular
- vectors) are returned in the array VT; = 'O': the first min(m,n)
- rows of V**H (the right singular vectors) are overwritten on the
- array A; = 'N': no rows of V**H (no right singular vectors) are
- computed.
-
- JOBVT and JOBU cannot both be 'O'.
-
- M (input) INTEGER
- The number of rows of the input matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the input matrix A. N >= 0.
-
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the M-by-N matrix A. On exit, if JOBU = 'O', A is
- overwritten with the first min(m,n) columns of U (the left
- singular vectors, stored columnwise); if JOBVT = 'O', A is
- overwritten with the first min(m,n) rows of V**H (the right
- singular vectors, stored rowwise); if JOBU .ne. 'O' and JOBVT
- .ne. 'O', the contents of A are destroyed.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- S (output) DOUBLE PRECISION array, dimension (min(M,N))
- The singular values of A, sorted so that S(i) >= S(i+1).
-
- U (output) COMPLEX*16 array, dimension (LDU,UCOL)
- (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'. If JOBU =
- 'A', U contains the M-by-M unitary matrix U; if JOBU = 'S', U
- contains the first min(m,n) columns of U (the left singular
- vectors, stored columnwise); if JOBU = 'N' or 'O', U is not
- referenced.
-
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >= 1; if JOBU = 'S' or
- 'A', LDU >= M.
-
- VT (output) COMPLEX*16 array, dimension (LDVT,N)
- If JOBVT = 'A', VT contains the N-by-N unitary matrix V**H; if
- JOBVT = 'S', VT contains the first min(m,n) rows of V**H (the
- right singular vectors, stored rowwise); if JOBVT = 'N' or 'O',
- VT is not referenced.
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- ZZZZGGGGEEEESSSSVVVVDDDD((((3333SSSS)))) ZZZZGGGGEEEESSSSVVVVDDDD((((3333SSSS))))
-
-
-
- LDVT (input) INTEGER
- The leading dimension of the array VT. LDVT >= 1; if JOBVT =
- 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= 1. LWORK >=
- 2*MIN(M,N)+MAX(M,N). For good performance, LWORK should
- generally be larger.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns this
- value as the first entry of the WORK array, and no error message
- related to LWORK is issued by XERBLA.
-
- RWORK (workspace) DOUBLE PRECISION array, dimension (5*min(M,N))
- On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the
- unconverged superdiagonal elements of an upper bidiagonal matrix
- B whose diagonal is in S (not necessarily sorted). B satisfies A
- = U * B * VT, so it has the same singular values as A, and
- singular vectors related by U and VT.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if ZBDSQR did not converge, INFO specifies how many
- superdiagonals of an intermediate bidiagonal form B did not
- converge to zero. See the description of RWORK above for details.
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-